Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
نویسندگان
چکیده
منابع مشابه
Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification
Learning the distance metric between pairs of examples is of great importance for visual recognition, especially for person re-identification (Re-Id). Recently, the contrastive and triplet loss are proposed to enhance the discriminative power of the deeply learned features, and have achieved remarkable success. As can be seen, either the contrastive or triplet loss is just one special case of t...
متن کاملActive Learning for Graph Embedding
Graph embedding provides an ecient solution for graph analysis by converting the graph into a low-dimensional space which preserves the structure information. In contrast to the graph structure data, the i.i.d. node embeddings can be processed eciently in terms of both time and space. Current semi-supervised graph embedding algorithms assume the labelled nodes are given, which may not be alwa...
متن کاملDeep Person Re-Identification with Improved Embedding
Person re-identification task has been greatly boosted by deep convolutional neural networks (CNNs) in recent years. The core of which is to enlarge the inter-class distinction as well as reduce the intra-class variance. However, to achieve this, existing deep models prefer to adopt image pairs or triplets to form verification loss, which is inefficient and unstable since the number of training...
متن کاملLearning Graph Representations with Embedding Propagation
Label Representations • Let l ∈ Rd be the representation of label l, and f be a differentiable embedding function • For labels of label type i, we apply a learnable embedding function l = fi(l) • hi(v) is the embedding of label type i for vertex v: hi(v) = gi ({l | l ∈ labels of type i associated with vertex v}) • h̃i(v) is the reconstruction of the embedding of label type i for vertex v: h̃i(v) ...
متن کاملGraph attribute embedding via Riemannian submersion learning
In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2019
ISSN: 1664-8021
DOI: 10.3389/fgene.2019.01182