Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

Learning the distance metric between pairs of examples is of great importance for visual recognition, especially for person re-identification (Re-Id). Recently, the contrastive and triplet loss are proposed to enhance the discriminative power of the deeply learned features, and have achieved remarkable success. As can be seen, either the contrastive or triplet loss is just one special case of t...

متن کامل

Active Learning for Graph Embedding

Graph embedding provides an ecient solution for graph analysis by converting the graph into a low-dimensional space which preserves the structure information. In contrast to the graph structure data, the i.i.d. node embeddings can be processed eciently in terms of both time and space. Current semi-supervised graph embedding algorithms assume the labelled nodes are given, which may not be alwa...

متن کامل

Deep Person Re-Identification with Improved Embedding

Person re-identification task has been greatly boosted by deep convolutional neural networks (CNNs) in recent years. The core of which is to enlarge the inter-class distinction as well as reduce the intra-class variance. However, to achieve this, existing deep models prefer to adopt image pairs or triplets to form verification loss, which is inefficient and unstable since the number of training...

متن کامل

Learning Graph Representations with Embedding Propagation

Label Representations • Let l ∈ Rd be the representation of label l, and f be a differentiable embedding function • For labels of label type i, we apply a learnable embedding function l = fi(l) • hi(v) is the embedding of label type i for vertex v: hi(v) = gi ({l | l ∈ labels of type i associated with vertex v}) • h̃i(v) is the reconstruction of the embedding of label type i for vertex v: h̃i(v) ...

متن کامل

Graph attribute embedding via Riemannian submersion learning

In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Genetics

سال: 2019

ISSN: 1664-8021

DOI: 10.3389/fgene.2019.01182